
Horseshoes, Hand Grenades,and 
Treatment Effects? Reassessing Bias in 
Nonexperimental Estimators

March 2013

By Kenneth Fortson, PhiliP Gleason, emma KoPa, and natalya VerBitsKy-saVitz

WORKING PAPER 16



Abstract: Randomized controlled trials (RCTs) are considered the gold standard in estimating 

treatment effects. When an RCT is infeasible, regression modeling or statistical matching are 

often used instead. Nonexperimental methods such as these could produce unbiased estimates if 

the underlying assumptions hold, but those assumptions are usually not testable. Most prior 

studies testing nonexperimental designs find that they fail to produce unbiased estimates, but 

these studies have examined weaker evaluation designs. The present study addresses these 

limitations. The use of baseline data that are strongly predictive of the key outcome measures 

considerably reduces but might not completely eliminate bias. 
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I. INTRODUCTION 

Experimental evaluations based on randomized controlled trials (RCTs) are widely 

considered to be the gold standard in evaluating the effects of a social program. However, an 

RCT is not always feasible. In some contexts, it might not be logistically possible or ethical to 

exclude individuals from participating in the program. In other contexts, researchers seeking to 

estimate the treatment effect of a program might lack the authority or resources to employ a 

random assignment design, even if it were logistically possible. Even when random assignment 

is possible for an intervention, it might not be possible for everyone served by the intervention, 

in which case the findings might not generalize broadly. For example, the experimental analysis 

of charter schools by Gleason et al. (2010), on which the current study is based, used lotteries 

employed by oversubscribed charter schools. Though their evaluation design had strong internal 

validity, the findings do not generalize to charter schools that were not oversubscribed. 

When an RCT is infeasible, researchers often resort to a nonexperimental approach for 

estimating program effects. A popular class of nonexperimental designs uses a nonrandomly 

selected comparison group to represent what would have happened to the treatment group had its 

members not participated in the program. However, the assumptions underlying nonexperimental 

evaluations are usually not testable in practice. This study examines the validity of comparison 

group designs based on regression and propensity score matching using data from an 

experimental evaluation of charter schools (Gleason et al. 2010), testing whether these designs 

can replicate the findings from a well-implemented random assignment study. 

In an experimental evaluation design, the randomly assigned control group is used to 

estimate the counterfactual—what would have happened in the absence of the intervention. 

When implemented well, an RCT ensures that the control group does not differ from the 



 

3 

treatment group in any systematic way that could bias the estimated treatment effect.  In contrast, 

a comparison group design estimates the counterfactual using a group that was not exposed to 

the intervention for any number of nonrandom reasons. Comparison group methods can, in 

theory, produce estimated treatment effects that are as good as those of a well-implemented 

experimental design. However, even the best comparison group designs rely on the assumption 

that the analysis can adjust for any differences between the characteristics of the treatment and 

comparison groups prior to treatment and that on average the two groups do not differ on any 

other unobserved dimensions that are correlated with the outcome(s) of interest (Rosenbaum and 

Rubin 1983; Little and Rubin 2000). 

One approach to investigating the question of whether comparison group methods produce 

unbiased treatment effect estimates involves efforts to replicate estimates from an existing 

experimental study using a comparison group design—a validation approach that is referred to in 

the literature as a “replication study” or a “within-study comparison.” A within-study 

comparison starts with a well-implemented experimental study that can be credibly believed to 

have produced unbiased estimates and then applies a comparison group design to estimate the 

same treatment effect parameters using data collected at least in part in the same study. 

Most of the existing replication studies of comparison group designs have been conducted 

for evaluations of job training programs, and the majority of these have found that comparison 

group designs cannot reliably replicate experimental estimates. This was the conclusion of the 

early replication work of LaLonde (1986), Fraker and Maynard (1987), and Friedlander and 

Robins (1995) and has been a consistent finding in most subsequent replication studies, as 

summarized by Glazerman et al. (2003). An exception was the work by Dehejia and Wahba 

(1999), which found that propensity score matching methods could replicate experimental 
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results. Smith and Todd (2005) subsequently found that these results were not robust to minor 

changes in the analysis sample, though Dehejia and Wahba dispute some of the Smith and Todd 

findings in further correspondence between the two sets of authors. Dehejia and Wahba’s 

findings were also sensitive to the pre-intervention variables used, suggesting that rich pre-

intervention data are necessary to overcome possible selection on observables. Recent work by 

Bloom et al. (2005) and Peikes et al. (2008) has expanded replication studies to other contexts, 

but the basic findings have been the same. 

Education interventions are attractive for a within-study comparison because achievement 

test scores are often the outcomes of greatest interest. Because achievement test scores are highly 

correlated over time, baseline measures of this outcome are likely to be highly predictive of 

follow-up measures of the outcome. Achievement test scores are also measured uniformly for 

most students in the same grade, at least within a locality and often within an entire state. Despite 

these advantages, few within-study comparisons have attempted to replicate experimental 

estimates of educational interventions’ treatment effects. Two early exceptions are the within-

study comparisons by Agodini and Dynarski (2004) and Wilde and Hollister (2007), which base 

their analyses on a drop-out prevention program and the Tennessee Project Star class size 

experiment, respectively. Both studies conclude that nonexperimental methods fail to replicate 

experimental findings. However, neither study was able to control for pre-intervention measures 

of the outcome. More recently, Bifulco (2012) examined magnet schools near Hartford, 

Connecticut, and found that propensity score methods could come close to replicating the 

experimental findings when highly predictive baseline data were used. Abdulkadiroglu et al. 

(2011) consider whether regression models come close to replicating experimental findings as 

part of a broader study of Boston’s charter and pilot schools, though the within-study comparison 
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is not the focus of their study, and consequently, their comparison of experimental and 

nonexperimental estimates is less formal and inconclusive. 

Cook et al. (2008) and Shadish et al. (2008) argued that the failure of comparison group 

designs to replicate experimental results stems from differences in data sources or unsuitable 

comparison groups. Cook et al. (2008) describe conditions that efforts to validate 

nonexperimental methods via a within-study comparison with a randomized experiment should 

attempt to meet. Key among them are that the experimental and nonexperimental approaches 

must be demonstrably good examples of their types and the data sources should be the same for 

the two analyses. The analyses should estimate the same statistical relationship. For example, if 

the experimental benchmark is an estimated effect of the intent to treat (ITT), the 

nonexperimental estimates should estimate the ITT effect, too. 

The within-study comparison presented in this paper contributes to the existing body of 

knowledge in two main ways. This study is one of the few replication studies of comparison 

group designs that (1) focuses on an education intervention and outcomes, allowing us to control 

for pre-intervention measures of the outcome, and (2) examines nonexperimental designs using a 

within-study comparison approach that addresses the concerns described in Cook et al. (2008) 

and Shadish et al. (2008). In contrast to previous work, key features of the present study are that 

our comparison group is drawn from same local areas as the experimental sample; we applied 

each approach such that the target parameter we are estimating is the same; and we 

systematically compare the two sets of estimates based on objective criteria, in contrast to 

previous studies that have only done subjective, ad hoc comparisons. Our study also has the 

advantage that rather than being limited to one city, it uses data from 15 localities across six 
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states. Consequently, any idiosyncrasies in one or two sites are less likely to determine whether 

our nonexperimental analyses replicate the experimental findings. 

The remainder of the report is structured as follows. We describe the charter school study 

data in Section II. Section III presents the charter school estimates using the benchmark 

experimental design. Section IV discusses the comparison group methods and the estimated 

treatment effects using those designs, and Section V compares the two sets of estimates using 

both formal and informal metrics. We conclude and discuss further extensions in Section VI. 

II. DATA USED IN THE ANALYSIS 

The charter school study collected data for two cohorts of students who applied to enter 

fifth, sixth, or seventh grade at participating charter schools in the 2005–2006 or 2006–2007 

school years.1 The study then collected follow-up data for sample members over two years 

(2005–2006 and 2006–2007 for cohort 1; 2006–2007 and 2007–2008 for cohort 2) and baseline 

data over the prior two years for each cohort. 

The experimental sample includes students who applied to attend charter middle schools in 

the study, participated in the schools’ admission lotteries, and consented to participate in the 

study. Students who “won” the lottery and were offered admission make up the treatment group 

for the study, whereas those who “lost” the lottery and were not offered admission form the 

control group. The control group is used only in the experimental analysis. The treatment group 

is used in both the experimental and nonexperimental analyses and is the population to which all 

analyses are designed to generalize. 

                                                 
1 See Gleason et al. (2010) for details about the sample selection and other methodological 

aspects of the charter school study. 
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The comparison group for the nonexperimental analysis is drawn from administrative data 

received from individual states or, sometimes, districts themselves. Of the 15 states and 36 

charter schools included in the original charter school study, we received data from 6 states 

covering all students in the same school districts as 15 charter schools from the original study. 

Both the experimental and comparison group data are restricted to these 15 sites. We further 

restricted the comparison group data to students who attended the same traditional public schools 

(TPSs)—what we call feeder schools—and grades as did the treatment students before they had 

the chance to attend the study’s charter middle schools.2 This restriction ensures that the pool of 

comparison students is most similar to the experimental sample in terms of neighborhoods and 

the schools to which the students have access. 

We imposed several additional data restrictions for the experimental and comparison group 

data to ensure the comparability of the two data sources and to ensure that the experimental and 

nonexperimental methods would estimate the same parameter. We limited the experimental 

sample to students who attended a TPS in the baseline year.3 We also restricted the 

nonexperimental comparison group to students who were in the same grades at baseline as the 

charter school applicants in each site. Lastly, we included students in the comparison group and 

experimental samples only if they had at least one baseline year test score and one follow-up 

year test score. Restricting the samples to students who have at least one baseline year test score 

ensures that there is a minimum amount of pre-intervention data for everyone in the sample.  

                                                 
2 Bifulco (2012) and Hoxby and Murarka (2007) make the counterpoint that students from 

the same neighborhoods or baseline feeder schools also are more likely to have self-selected out 
of charter schools and so are fundamentally different from those who chose to apply to charter 
schools. We explore this possibility (among other sensitivity analyses) in Section V. 

3 This restriction is similar to, although not exactly the same as, the sample restrictions used 
in the primary analysis of Gleason et al. (2010). 
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Table 1 reports the sample sizes for the three research groups used in our analysis. In total, 

our final analysis sample includes 635 treatment students, 304 control students, and 20,407 

comparison students. Among the students who meet our restrictions on baseline data, similar 

proportions of treatment and control students have valid follow-up data (94 and 89 percent, 

respectively), so the experimental estimates should not be substantially influenced by differential 

attrition. Comparison students are more likely to have sufficient follow-up data for inclusion than 

are the treatment or control students. This is because the students who applied for a charter 

school lottery are more likely to be exploring non-TPS education options, including outside 

options (such as private schools), from which we would not obtain follow-up test scores. 

The raw data we obtained for the comparison group comprised all students in the state (or 

district), restricted to students who attended traditional public schools at baseline and during the 

follow-up years, whether or not they were part of the charter school study as a treatment or 

control group member. We then removed students from the comparison data if they were also in 

the charter school study, so that the remaining comparison group would emulate a comparison 

group that would be available were there not a lottery granting students admission to the charter 

schools. In other words, by design, we created a comparison group composed of students who 

had chosen not to apply to the charter school lotteries, which is the comparison group that would 

be available to a researcher conducting nonexperimental analysis in most contexts (in particular, 

for studies of nonoversubscribed charter schools that do not hold admissions lotteries). 

For all but two states, we have four years of achievement test scores in reading and math for 

students in the study sample (Table 2). Two years of test scores pertain to the period before 

students applied to the lottery charter schools (which we term baseline and prebaseline for the 

year immediately preceding charter school application and two years prior, respectively) and two 
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years of test scores in the follow-up period. Achievement test scores were standardized based on 

the state means and standard deviations provided for the associated tests in a given year and 

grade. We also have baseline demographic data, which for most sites include race/ethnicity, 

gender, limited English proficiency/English-language learner (ELL) status, special education 

status, and free or reduced-price lunch (FRPL) eligibility. 

To address the fact that we did not have valid data on all characteristics in all sites in our 

analysis and that some students were missing data on select baseline characteristics, we added 

missing data indicators for the demographics, baseline test scores, and prebaseline test scores. 

This simple approach performed well in the simulations conducted by Puma et al. (2009). For the 

follow-up year test scores, we did not impute missing values. Thus, students for whom we were 

missing data on the key outcome being examined (first-year mathematics and reading scores in 

our main analysis) were excluded from the analysis sample. 

We limit our primary analysis to math and reading test scores during the first year after 

students in the treatment group would have matriculated at the lottery charter schools. Limiting 

the number of statistical tests on which we base our conclusions avoids problems of multiple 

comparisons and simplifies the interpretation of the findings. At the same time, math and reading 

scores could conceivably have different properties, so we include both. We focus on first year 

test scores rather than second year scores because more students who have baseline test scores 

have first year scores than second, so the analysis sample size is larger. 

III. EXPERIMENTAL ANALYSIS 

In the charter school study, students’ actual charter school attendance could deviate from 

their assignment in the lottery. Most commonly, some students who won the lottery and were 

permitted to attend the charter school chose not to attend (18 percent of our treatment group). 
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Conversely, a small number of students lost the lottery but nevertheless were able to attend a 

lottery charter school (4 percent of our control group). Additionally, students from both groups 

could instead attend another local charter school that was not part of the study; in practice, 

several students did (5 percent of the treatment group and 7 percent of the control group). Thus, 

the randomly assigned treatment group largely comprises students who attended a study charter 

school, and the control group largely comprises students who did not attend a study charter 

school and instead attended a TPS or a nonstudy charter school. 

Given that there was noncompliance with the lottery assignments, we considered whether 

the analysis would focus on estimating the effect of ITT or the local average treatment effect 

(LATE). Conceptually, in the present context, the ITT contrasts the outcomes of individuals who 

received an offer of admission to the charter school group through a lottery with those who did 

not, regardless of whether they actually attended the charter school to which they were assigned. 

The identification of the LATE is based on a contrast in the outcomes of compliers in the 

treatment and control groups, where compliers are those who would attend a study charter school 

if offered admission (and placed in the treatment group) and who would not attend a study 

charter school if not offered admission (and placed in the control group). The ITT and LATE can 

both be estimated with either an experimental or a nonexperimental design. However, in practice, 

experimental analyses usually estimate the ITT, and nonexperimental analyses usually estimate 

the LATE. 

We focus our study on comparing experimental and nonexperimental estimates of the ITT 

rather than the LATE. If we were to use the LATE instead, we could not be certain that any 

differences between the experimental and nonexperimental estimates were because of a failure in 

the assumptions underlying the nonexperimental methods rather than a failure of the assumptions 
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about noncompliers that are made when an experimental design estimates the LATE. For 

example, Hastings et al. (2012) find that lottery winners are more motivated after learning that 

they won a school lottery even before they enroll in a new school. Moreover, even if the 

assumptions underlying experimental estimates of the LATE are satisfied, experimental and 

nonexperimental designs do not estimate the LATE for the same population of students. An 

experimental LATE estimate would provide the estimated effect for compliers—those who 

would attend a charter school if offered admission but not otherwise. In contrast, the 

nonexperimental LATE estimate would provide the estimated effect for everyone who attended 

one of the study charter schools, including noncompliers who did not receive an offer of 

admission through a charter school lottery but nevertheless attended a study charter school and 

their counterparts in the treatment group who attended one of the study charter schools but would 

have even if they had not been offered admission. 

The charter school analysis uses data from six states and 15 charter schools, each with its 

own lottery and state-specific assessments. To maximize statistical power, the study focuses on 

an effect estimate that pools all sites for which we have data. State assessment measures have 

been standardized within state, year, and grade. Our pooled treatment effect estimate weights 

sites differently than does the procedure used by Gleason et al. (2010). That study treated sites as 

mini-experiments, each of which was weighted equally in calculating the pooled treatment effect 

estimate. However, the sizes of the sites varied considerably, and giving equal weight to sites 

with small and large sample sizes reduced statistical precision compared with weighting each site 

according to its sample size. In the present analysis, to minimize design effects from weighting, 

our experimental analysis weights the treatment and control groups in each site proportional to 
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the size of the treatment group in that site. (This weighting approach is applied to the 

nonexperimental analyses as well.) 

Overall, the treatment and control groups in our analysis sample have similar pre-

intervention test scores and demographic variables (Table 3). However, compared with the 

control group, a greater proportion of the treatment group is Hispanic than is Black or another 

race/ethnicity. 

For our main specification, the experimental estimates were estimated using the following 

regression model: 

(1)         ' ' ,i i i i iy T X S  

where iy  is the test score for student i at follow-up; iT  is a binary variable equal to 1 if the 

student is selected through the lottery to attend a charter school and 0 otherwise; iX  is a vector 

of student covariates, which includes baseline math and reading test scores, prebaseline math and 

reading test scores, race, gender, free or reduced-price lunch eligibility, ELL status, disability 

status, baseline and prebaseline test scores for the other subject (math or reading), and 

interactions between some of these variables (described in more detail in the next section); and 

i  is an error term. iS  is a vector of binary indicators for the student’s site and grade, which 

helps control for fundamental differences across sites or between the test score measures used by 

each state. The parameter of interest in Equation (1) is  , which is the ITT estimate of the effect 

of applying to and being offered admission to the charter school. 

The specific baseline variables and higher-order terms included in the model were 

systematically chosen based on their correlations with the outcome measure. We describe this 

process in detail in Section IV. As demonstrated in Section V, the experimental estimates are 

robust to alternative regression specifications, so our benchmark estimates employ the 
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specification developed in the nonexperimental regression analysis. This ensures that any 

differences between the significance levels of the experimental and nonexperimental results are 

not driven by differences in the explanatory power of the covariates. 

The experimental effects that serve as the benchmark results for most of the 

nonexperimental approaches are presented in Table 4. We estimate that students randomly 

selected to attend charter schools through the lottery have nearly identical average math test 

scores (0.58) as students in the control group (also 0.58) after the first follow-up year. The 

estimated treatment effect of -0.01 is statistically indistinguishable from zero. Likewise, 

treatment and control students have nearly identical average reading test scores (0.51). The 

estimated effect of charter schools on first-year reading test scores is 0.00. 

IV. NONEXPERIMENTAL COMPARISON GROUP ANALYSES 

In the context of school choice, there are numerous reasons a student (or a student’s parents) 

would choose to apply to a charter school. Higher-achieving students might be more motivated 

to seek out opportunities, making them more likely to apply than lower-achieving students; 

alternatively, lower-achieving students could be trying to find new schools at which they might 

have more success. More-motivated parents might be more likely than other parents to explore 

alternative educational opportunities for their children. For example, some students or parents 

might prefer schools that put more emphasis on the arts and less on core subjects such as math 

and reading or seek out schools that accommodate special instructional needs. Parents might 

prefer to send their children to schools that are close to their homes; conversely, if they reside in 

disadvantaged neighborhoods, they might wish to send their children to schools farther away. 

If any of these factors is associated with both a student’s decision to apply to a charter 

school and his or her academic achievement, failure to account for it properly in the analysis 
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could bias the nonexperimental estimates. Most nonexperimental studies examining the effect of 

charter schools (or some other educational intervention) on student achievement have good 

measures of some confounding factors, such as a student’s prior achievement from standardized 

tests. For other factors, such as parents’ motivation or different academic priorities, we rarely 

have direct measures; for these factors, nonexperimental analyses generally assume either that 

the factor is encompassed by other available measures, such as baseline test scores or 

demographics, or that it does not affect either the outcome measure or the student’s decision to 

apply to charter school. Moreover, even if we observe all potential confounding factors, 

treatment effect estimates from nonexperimental analyses are theoretically unbiased only if the 

functional relationship between the outcome measure, treatment status, and confounding factors 

is correctly specified. 

The present study covers two nonexperimental comparison group approaches, each of which 

can theoretically account for selection bias.4 The first approach uses a basic regression model 

with a broadly defined comparison group to control for observable pre-intervention 

characteristics that might differ for the treatment and comparison groups. The second approach, 

propensity score matching (PSM), restricts the comparison group to those comparison group 

students who look most similar to the treatment group along observable dimensions. 

As described in Section III, we estimate the ITT for both the experimental and 

nonexperimental analyses. To replicate the experimental ITT estimate, the comparison group 

approaches attempt to identify a set of comparison students for the full set of treatment students, 

                                                 
4 We note that although we treat these as separate approaches, several strategies can be 

combined in practice. Indeed, parts of our analysis combine regression with propensity score 
matching. 
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regardless of whether those treatment students ultimately attended the charter school or some 

other school. 

A. Regression-Based Comparison Group Approach 

An ordinary least squares (OLS) regression is the simplest and perhaps most commonly used 

approach for estimating treatment effects in a nonexperimental study. In our regression model, 

the treatment group consists of students who were offered admission to charter schools through 

the school’s lottery; these students also make up the treatment group of the experimental 

approach. The comparison group includes the students who did not participate in the lottery but 

who were in the same TPSs and grades at baseline as the treatment students and remained in 

traditional public schools during the follow-up period. 

The regression-based comparison group approach relies on two key assumptions in order for 

the estimator of the program’s effect to be unbiased. First, the regression-based approach 

assumes that all factors confounding the relationship between treatment group status and test 

scores are observed, measured, and included in the regression model; this is also referred to as 

the unconfoundedness assumption (Rosenbaum and Rubin 1983; Little and Rubin 2000). In 

practice, the unconfoundedness assumption is untestable. However, using baseline data that have 

prior achievement test scores and other observed potential confounding factors makes this 

assumption more plausible. 

The second assumption of a nonexperimental regression approach is that the functional 

relationships between all confounding factors and the outcome measures are specified correctly. 

Researchers employ different strategies for specifying the regression model, but there is no 

consistent approach used in prior literature. We developed our regression model using the 

following steps. We began with a simple model that included all of the candidate covariates—
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variables that are theoretically associated with test score gains and commonly used in empirical 

studies of school choice—as well as their associated missing data indicators. We then fit four 

models, each testing whether a given pre-test had a quadratic relationship with a test score at 

follow-up, while controlling for the main effects of the other observed covariates specified in the 

first step. Next, we fit a set of models, each testing whether an interaction between each pair of 

covariates was statistically significant, while controlling for other observed covariates. Any 

higher-order terms found to be statistically significant in these two steps were then 

simultaneously added to the model in the first step and again tested for statistical significance. 

Finally, any higher-order terms found to be insignificant in the previous step were dropped and a 

simplified model was estimated. This step was repeated until all remaining higher-order terms 

were statistically significant. All model-building statistical tests were performed at the more 

liberal 0.10 significance level. 

We performed this model-building procedure separately for the mathematics and reading 

outcomes. The form of the final regression model was analogous to Equation (1). Within a given 

site, each comparison student was assigned an equal weight based on the total weight of the 

treatment students in his or her site divided by the number of comparison students in that site. 

Because both treatment and comparison students within a site summed to the same total weight, 

the relative influence of each site on the overall treatment effect estimate was proportional to the 

weighted sample size of the treatment group. This also ensured that a given site would have the 

same weight in both the experimental and the regression-based comparison group approaches 

and that any potential differences between estimated effects could be attributable to the 

compared approaches themselves rather than to differences in the parameters they were 

estimating. 
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Table 5 shows the estimated effects on math and reading test scores using the regression-

based comparison group approach. After controlling for other observed factors that could 

influence student achievement, on average the treatment students performed better than the 

comparison students performed on the mathematics test (mean = 0.35 versus 0.28). Thus, we 

would conclude that being offered admission to the charter school resulted in an effect on 

students’ math achievement that was statistically significant though modest in magnitude (effect 

= 0.06, p = 0.01). Similarly, after controlling for other covariates, on average the treatment 

students also performed significantly better than the comparison students performed on the 

reading test (mean = 0.28 versus 0.21, effect = 0.06, p = 0.01). The estimated effect on math test 

scores is smaller than the estimated effects from experimental and nonexperimental studies in 

which charter schools were found to have positive effects, such as studies of charter schools in 

New York City (Hoxby et al. 2009), in the Knowledge is Power Program (Tuttle et al. 2010), in 

Boston (Abdulkadiroglu et al. 2011), in Massachusetts (Angrist et al. 2011), and in the Harlem 

Children’s Zone (Dobbie and Fryer 2011). These studies have found estimated annual treatment 

effects on math test scores of at least 0.12 standard deviations, with some of the estimates well 

above 0.12. The analogous estimated treatment effects on reading or English/Language Arts are 

closer in magnitude to our estimates for reading. 

B. Propensity Score Matching (PSM) Approach 

A potential limitation of the regression model is that even if we observe all confounding 

factors, we have no way of knowing whether we have fully and appropriately modeled the 

relationships between those factors and the outcome measures. This becomes a greater concern 

when the treatment and comparison groups have very different distributions of baseline 

characteristics (that is, limited common support), and this is the case in the present context. For 
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example, the average baseline test scores for the treatment group are 0.4 to 0.5 standard 

deviations higher than the average baseline test scores for the comparison group. Statistical 

matching can overcome this limitation by restricting the analysis to the subset of the comparison 

group for which observable baseline characteristics are similar to the treatment group. If the 

distribution of baseline characteristics is similar for the treatment and comparison groups such 

that baseline characteristics are independent of treatment status among the matched sample, 

statistical modeling is less important for obtaining unbiased treatment effect estimates. However, 

as with the regression model, matching approaches cannot account for any unobservable 

confounding factors. 

Propensity score matching (PSM) is the most common form of statistical matching used by 

researchers, and we focus on this form of matching as well. The central concept of PSM is to 

estimate the probability of being in the treatment group for both the treatment group and the 

possible comparison group students based on the observed data. This probability is known as the 

propensity score. Theoretically, appropriately controlling for the propensity score in the analysis 

would then result in an unbiased estimator of the treatment effect (Rosenbaum and Rubin 1983). 

Analytically, the propensity score is incorporated into the estimation of the treatment effect in a 

variety of ways, such as including it as a covariate in the regression model, weighting, or 

matching. Imbens and Wooldridge (2009) persuasively argue that the first two approaches are 

practically challenging, whereas matching is intuitive and is appropriate when the number of 

potential comparisons is much larger than the number of treatment units, as in our case. 

Furthermore, matching is more commonly used in practice. Hence, we followed Imbens and 

Wooldridge in focusing on estimators that couple matching on the propensity score with 

regression adjustment, which protects against misspecification in either model. We also match on 
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the propensity score itself, which is most common in practice, though researchers have also 

matched on transformations of the propensity score.5 

In our PSM model, the treatment group again consisted of students who were offered an 

opportunity to move from traditional public schools to charter schools via the charter schools’ 

lotteries, with a comparison group selected from among students who were not offered admission 

to the charter schools and who did not participate in the lotteries. In this approach, however, the 

comparison group was selected from a large set of potential comparison students by retaining 

only those comparison students whose estimated propensity scores were similar to those of 

treatment group students. 

The first step for the PSM approach is to estimate a propensity score for each student in the 

sample. To determine the appropriate propensity score model, we used a stepwise model 

selection procedure for the logistic regression. This procedure starts with an intercept-only model 

and, at each step, either adds or subtracts a term from a specified set of potential covariates in 

order to optimize model fit to the data. We then slightly modified this model to ensure that all 

groups of covariates were complete; for example, missing indicators were included with their 

associated variables, and all race categories were included. The final propensity model included 

the four pre-test scores; indicators for sex, race/ethnicity, FRPL status, ELL status, disability 

status, grade, and site; and 13 of the two-way interactions between these covariates. This 

                                                 
5 For example, Heckman and Todd (2009) demonstrate that matching on the odds ratio (or 

log odds ratio) of the propensity score could be used even if the population weights are not 
known, and consequently the propensity score is not consistently estimated. Another approach is 
to match on the index used to estimate the propensity score; as discussed by Lechner (1999), 
matching on the index may be preferable in contexts where many observations have estimated 
propensity scores near 0 or 1. 
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specification fit the data well (Hosmer and Lemeshow goodness-of-fit test p-value = 0.15).6 We 

then used this model to estimate a predicted propensity score for each student in the sample. 

After estimating the propensity scores, we selected a matched comparison group. Perhaps 

the most intuitive analytical approach is to match each treatment student to a single comparison 

student with the closest propensity score (that is, the nearest neighbor match). Using more 

matches for each observation, however, can improve statistical precision by increasing the total 

sample size, though it is crucial that the quality of the matches is not compromised when the 

quantity increases. For this reason, we implemented caliper matching, whereby a given treatment 

student is matched to all comparison students with estimated propensity scores within a specified 

range (or caliper) rather than merely selecting a specified number of nearest neighbors. Selecting 

a small caliper minimizes observable differences (and by extension, bias) between matched units 

but also results in many unmatched treatment students. To balance the conflicting demands of 

finding the best possible matches (that is, reducing bias) and matching the largest proportion of 

treatment students (that is, improving external validity), we used an “adaptive caliper” approach 

that sequentially considers nine specified calipers for each treatment student. The smallest 

caliper would identify comparison matches with estimated propensity scores that were within 10-

5 of a given treatment student’s propensity score. The largest caliper would match the treatment 

student to comparison student propensity scores within 0.025 of the treatment student’s score. 

Starting with the smallest range (caliper), we then checked for matches. If a treatment student 

                                                 
6 The Hosmer and Lemeshow goodness-of-fit statistic is constructed by first dividing the 

observations into deciles based on their predicted probabilities and then calculating the chi-
square statistic, testing whether the distributions of predicted and actual frequencies across 
deciles are the same. Smaller p-values indicate worse model fits. For comparison, we also used 
forward and backward model selection procedures, both of which yielded similar models. 
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had between 2 and 30 potential matches, all of these comparison students were identified as the 

matches for the given treatment student. If the number of potential matches exceeded 30, we 

identified the 30 comparison students with the closest propensity score (that is, the best-matched 

students) as the matches to this treatment student. This cap of 30 comparison students per 

treatment student helped to avoid creating design effects due to substantial variation in weights. 

If we did not find at least two matches, we increased the caliper to the next level and tried again. 

If no matches were found at the maximum allowable caliper (that is, 0.025), we excluded the 

treatment student from further PSM-based analyses. 

Another consideration in selecting a matched sample is whether to match with or without 

replacement; that is, whether to allow a given student from the comparison group to be matched 

to multiple treatment students and then to weight each comparison student by the number of 

treatment group matches. Matching with replacement reduces bias by allowing for closer 

matches, but it also increases standard errors because of the design effects from weighting. 

However, allowing each treatment student to be (potentially) matched to multiple comparison 

students might counteract the precision losses so that we minimize potential bias while 

maintaining statistical precision. The matching procedure was implemented separately for each 

site. Matched comparison students were assigned the analysis weight (or a portion of the weight) 

for the treatment students to whom they were matched. 

Our matching approach yielded matches for 88 percent of treatment group students (551 of 

the 629 for math and 552 of the 630 for reading), with an average of three comparison group 

students matched to each treatment student. Furthermore, although the original treatment and 

comparison groups differed on most of the observed covariates, the matched treatment and 

comparison groups showed baseline equivalence on all baseline covariates (Table 6). The 
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analysis sample for reading differs slightly from the analysis sample for math, but the matched 

samples exhibit similar balance (not shown). 

After constructing the matched comparison group, we estimated treatment effects using the 

same regression model described above, with the only difference being the observations and the 

corresponding weights used in the estimation. If the propensity score model is correctly 

specified, then regression adjustment is theoretically unnecessary for PSM to yield unbiased 

estimates. However, combining matching with regression boosts statistical power and helps with 

robustness to the parametric model misspecifications in either the propensity score model or the 

regression model used to estimate treatment effects (Imbens and Wooldridge 2009). To account 

for the uncertainty due to the matching process, we used bootstrapping with 1,000 iterations to 

estimate the standard errors for the PSM approach.7 

Using PSM we find small positive treatment effects of being offered admission to a charter 

school on students’ mathematics and reading achievement (Table 7). On average, the treatment 

students performed better than the comparison students performed on the math test (mean = 0.54 

versus 0.49). The estimated treatment effect of being offered charter school admission on math 

achievement test scores is not statistically significant at the 5 percent level but is significant at 

the 10 percent level (estimate = 0.05,  p-value = 0.08). Similarly, the estimated treatment effect 

on reading test scores is positive but not statistically significant, though it is on the margin of 

being statistically significant at the 10 percent level (estimate = 0.05, p = 0.11). 

 

                                                 
7 Abadie and Imbens (2008) demonstrate that with nearest neighbor matching and a fixed 

number of matches per treatment unit, bootstrapping does not yield valid statistical inference for 
PSM. However, when the number of matches increases with the sample size, as is the case with 
caliper matching, bootstrapping provides correct standard errors. 
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V. COMPARING EXPERIMENTAL AND NONEXPERIMENTAL ESTIMATES 

A. Do the Nonexperimental Approaches Replicate the Experimental Findings? 

We use two criteria to determine whether a given nonexperimental treatment effect estimate 

replicates the experimental benchmark. The first criterion is to consider whether the conclusion 

that would be drawn from its estimated treatment effect is the same. Specifically, we examine 

whether the basic magnitude and sign of the estimates are comparable and whether the statistical 

significance (or insignificance) is the same. The second criterion is whether the nonexperimental 

estimate is statistically different from the experimental benchmark. 

Criterion 1: Do the nonexperimental estimates lead to the same policy conclusion as the 

experimental benchmark? The estimated treatment effect on math test scores for our 

experimental benchmark (from Section III) and each of our nonexperimental approaches (from 

Section IV) are summarized in Table 8 (top panel). The experimental benchmark estimate is  

-0.01 and statistically insignificant. In contrast, the estimate for the nonexperimental regression 

approach is positive and statistically significant, though the magnitude is relatively small (0.06). 

PSM yields an estimate closer to the experimental benchmark of -0.01, and it is not statistically 

significant at the conventional 5 percent level, though it is significant at the 10 percent level. For 

this reason, it is uncertain whether a policymaker would interpret the math treatment effect 

estimate from PSM the same way as the experimental estimate. 

Most of the findings are similar when we compare the treatment effect estimates for reading 

test scores (Table 8, bottom panel). Compared with the experimental estimate of 0.00, the 

regression yields a positive and statistically significant treatment effect estimate, though its 

magnitude is small (0.06). Propensity score matching yields a positive but statistically 

insignificant estimate, though once again it is on the margin of statistical significance. 
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Criterion 2: Is the nonexperimental estimate statistically different from the 

experimental benchmark? These simple comparisons do not tell us whether any observed 

differences are due to chance or should be considered statistically meaningful. Criterion 1 is also 

subjective. The findings in Abdulkadiroglu et al. (2011) illustrate the challenge in interpreting 

differences between experimental and nonexperimental estimates. Their estimated treatment 

effects are statistically significant and positive using either the experimental or nonexperimental 

model, and the authors conclude that the two sets of estimates are “remarkably close.” However, 

the absolute differences between the estimated experimental and nonexperimental treatment 

effects for math and for writing composition are both 0.10 standard deviations in the high school 

sample. By way of comparison, Hoxby et al. (2009) estimate charter school treatment effects on 

math and English of 0.12 and 0.09 standard deviations, respectively, and these estimates are 

considered large and meaningful. 

Moreover, the conclusions we draw could be influenced by differences in precision for the 

nonexperimental and experimental estimates, especially for the nonexperimental regression 

model, where the sample size is large. However, we note that the treatment effects we estimated 

with the nonexperimental regression would be significant even if their standard errors were of 

the same magnitude as the matching models. 

Hence, our second criterion is whether the nonexperimental and experimental estimates are 

statistically different from each other. Because the treatment groups used in the nonexperimental 

and experimental analyses largely but do not always completely overlap—for example, the PSM 

estimates restrict the analysis sample to observations with common support—the estimates are 

not statistically independent and we must account for this covariance in order to test for 

significant differences between the nonexperimental estimates and the experimental benchmarks. 
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We use bootstrapping to accomplish this. In each iteration of the bootstrap, we recalculate the 

experimental estimates and the nonexperimental comparison group estimates—including the full 

matching process for PSM—and then the difference between the two.8 

When we consider whether the observed differences in estimates are statistically significant 

(criterion 2), the findings are similar to our assessments of whether the policy conclusion is the 

same (criterion 1) but not entirely the same.9 The nonexperimental regression estimates are 

significantly different from the experimental benchmark for math with a p-value of 0.03 and very 

close to statistically significant for reading with a p-value of 0.06 (Table 8). The propensity score 

estimate is not significantly different from the experimental benchmark for math or reading. 

However, although the regression estimates do not perform quite as favorably in these tests 

as the propensity score approach, the regression estimates were not statistically significantly 

different from the matching estimates. The p-values of the difference between the regression and 

propensity score approach were 0.42 for math and 0.46 for reading.  

B. Sensitivity of Findings to Data Availability, Comparison Group Definitions, and Model 

Specifications 

We next summarize findings from exploratory analyses that examined whether our 

conclusions depend on the exact specifications employed, comparison groups used, or pre-

intervention data available. We focus on the nonexperimental OLS regression model for practical 

                                                 
8 Each iteration of the bootstrap uses the same propensity score model, regression 

specification, and set of exact matching covariates. 
9 We note that the null hypothesis is that the experimental and nonexperimental estimates 

are no different; that is, the test is set up such that we require strong statistical evidence to 
conclude that the nonexperimental estimate differs from its experimental benchmark. 
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considerations. Specifically, the regression approach does not require computationally intensive 

bootstrapping to generate valid standard errors. 

We first examine how sensitive the experimental and nonexperimental regression-based 

estimates are to the variables included in the regression model. This is informative both as a 

helpful sensitivity check of whether our modeling decisions distorted the results and as a means 

of examining which baseline covariates are most important for reducing bias in the 

nonexperimental estimates. 

The experimental treatment effect estimates are robust to specifications where we do not 

include any interaction terms, where we exclude prebaseline test scores (and any interactions 

with prebaseline test scores), and where we exclude all test scores (baseline and prebaseline) 

from the regression (first two columns of Table 9). The point estimate for the treatment effect on 

reading becomes more negative when we exclude all covariates from the model, but the 

difference is not large and the treatment effect estimate remains statistically insignificant. The 

point estimate for the treatment effect on math is not sensitive to excluding covariates from the 

model. 

The treatment effect estimates in the nonexperimental regression are slightly larger when we 

exclude interaction terms or when we exclude prebaseline test scores. The importance of 

including at least one year of baseline test scores (including both math and reading scores) is 

clear. If we do not include any test scores in the regression, the estimate inflates considerably—

because the students who applied to charter school lotteries are higher achieving, on average, 

than are nonapplicants—confirming that test scores are crucial for reducing bias in 

nonexperimental approaches. If we do not control for any baseline covariates and simply 

compare weighted means for the treatment and comparison unit, the estimated treatment effect 
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would be about half of a standard deviation higher than the experimental benchmark (0.51 for 

math, 0.47 for reading). Moreover, the nonexperimental estimates for the model that excludes 

baseline test scores but has all other baseline characteristics are very similar (0.46 for math, 0.43 

for reading) to those when no covariates are accounted for at all (0.51 for math, 0.47 for 

reading). 

As described previously, not all sites had prebaseline test scores; our estimates use all 

available test score data at the site. Conceivably, prebaseline test scores could be required for the 

nonexperimental approach to be valid. If so, mixing sites for which we do not have prebaseline 

test scores with sites for which we do could lead to the false conclusion that the nonexperimental 

approach is invalid. We explore this possibility by limiting our analysis to the 12 sites for which 

we have prebaseline test scores for most students. For this restricted subsample, the estimates are 

similar whether the regression includes or excludes prebaseline test scores (Table 10). The 

treatment effect estimates for reading among this subsample of sites are actually negative and 

statistically significant in the experimental analysis but positive and insignificant for the 

nonexperimental regression. The difference between the experimental and nonexperimental 

estimates for reading does increase from 0.09 when we include prebaseline tests to 0.15 when we 

exclude them, but the samples are too small for us to know if this is a real improvement or just 

chance. 

Finally, instead of restricting the pool of comparison students to students in the same 

baseline TPSs as treatment group students, we expand the comparison group to all students in the 

same district as a given charter school. Our main analysis assumes that students who come from 

the same feeder schools as charter school attendees are most likely to have similar 

socioeconomic status, educational opportunities, and neighborhood conditions. However, as 
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discussed in Section II, Bifulco (2012) and Hoxby and Murarka (2007) note that students from 

the same neighborhoods or baseline feeder schools also are more likely to have self-selected out 

of charter schools and so could be fundamentally different. Students from the full district are less 

likely to have willfully opted out of charter schools, perhaps because the charter school is too far 

for it to be a practical option for them or for the students’ parents to be familiar with. Table 11 

presents treatment effect estimates for the regression model using the full district as the 

comparison group alongside results from our main analysis for comparison. The estimates using 

the full district are slightly larger than our main analysis for both math (0.08 versus 0.06) and 

reading (0.07 versus 0.06) but not qualitatively different. 

We also considered the possibility that measurement error in the baseline and prebaseline 

test scores could differentially affect the experimental and nonexperimental estimates of charter 

school treatment effects. For the experimental estimates, measurement error should be 

uncorrelated with treatment status. In contrast, for the nonexperimental estimates, treatment 

status could be correlated with measurement error, biasing the nonexperimental estimates. The 

estimates would be biased upward if there were a negative correlation between measurement 

error and treatment status. We explored this issue using errors-in-variables (EIV) models to 

examine how correcting for measurement error in pretest scores would affect the regression-

based treatment effect estimates. Correctly implementing EIV is not possible for our main 

specification because EIV does not work well with interaction terms, which will also be 

measured with error and are an important improvement in the specification, as discussed above. 

Thus, we estimated an EIV model without interaction terms and compared it with the no-

interaction model reported in Table 9 above. 
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We obtained measures of reliability from four of the six states included in the present study 

for a subset of school years, and the reliability measures of these tests were quite high, with 

Cronbach’s alphas generally in the 0.85 to 0.95 range. To implement EIV, we assumed a uniform 

reliability of 0.90 and found that EIV did somewhat move the estimates in the direction of the 

experimental treatment effect estimates (compared with the no-interactions regression model 

reported above), but the estimates are still significant. 

VI. CONCLUDING THOUGHTS AND POSSIBLE EXTENSIONS 

We draw three key lessons from the evidence presented in this study: 

Pre-intervention data that are strongly predictive of the key outcome measures 

considerably reduced but did not completely eliminate bias from the nonexperimental 

regression approach. The nonexperimental regression model estimated different treatment 

effects compared with the experimental benchmark, and the two estimates are significantly 

different. On the other hand, the bias—the difference between the nonexperimental and 

experimental treatment effect estimates—does not appear to be large. The statistically significant 

estimate from the regression model is not large compared with the near-zero experimental 

benchmark. The regression model also comes considerably closer to replicating the experimental 

benchmark when we control for baseline test scores than when we do not. 

Estimated treatment effects using propensity score matching and rich pre-intervention 

data were not statistically different from their experimental benchmarks. Estimates using 

the propensity score matching method were not statistically significantly different from our 

experimental benchmark estimates. However, the matching and regression-based estimates are 

not greatly different from one another: For example, the difference between the estimated 

nonexperimental treatment effect and the experimental benchmark is 0.06 and 0.05 for regression 
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and propensity score matching, respectively. Hence, bias may remain in the matching estimates, 

but the bias is too small to reliably detect without very large sample sizes. The estimated 

treatment effects using matching are not significantly different from the regression model either. 

These findings were robust to the model specifications, type of pre-intervention data, 

and comparison group used in the analysis. Our findings do not appreciably change when we 

consider alternative model specifications that would conceivably reduce bias in the 

nonexperimental estimates. As noted earlier, the most important factor to account for in the 

nonexperimental analysis is baseline test scores; controlling for baseline test scores in both 

reading and math reduces the difference between the experimental and nonexperimental 

estimates to less than a quarter of the bias when no pre-intervention test scores are used. 

Conditional on controlling for baseline test scores, however, there is no evidence that controlling 

for a second year of pre-intervention test scores further reduces bias. There is some evidence that 

bias is worsened by removing interaction terms in the regression model, but overall there is not 

strong evidence that the empirical decisions the researcher makes for how to analyze the data 

greatly influence the treatment effect estimates. Lastly, widening the pool of comparison students 

to the whole school district, rather than just students in the same baseline feeder schools as the 

treatment group, does not change our core findings. 

There remain a number of possible extensions that future research could explore. 

Conducting a within-study comparison with larger sample sizes for the experimental treatment 

and control groups would help to distinguish estimators that reliably replicate the experimental 

estimates from those with small amounts of bias. Another extension that could be explored 

would be how the nonexperimental and experimental estimates of the LATE parameter, rather 

than the ITT parameter on which we have focused, compare. 
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More broadly, conducting within-study comparisons in different contexts would be a 

valuable extension. A limitation of our analysis (and of any within-study comparison) is that the 

results may be driven by some idiosyncratic characteristic of the conditions under which it has 

been conducted. In other words, the results we present here may not be replicated in other 

contexts. Contexts that would be of greatest value for additional research are those that share 

many of the same features as the present study—strongly predictive pre-intervention data that 

plausibly account for the selection mechanism, broad geographic scope, and adherence to 

replication standards—but for which the intervention is substantively different or the 

experimental treatment effect estimates are larger (positive or negative) than the estimates for 

charter schools. Within-study comparisons conducted in these contexts would help in assessing 

whether the findings from the present study are attributable to features of the methodological 

approach used in the study itself or just the particular context. Another valuable avenue for future 

research would be to use rich data sets containing variables not usually available to researchers 

(such as direct measures of parental motivation or a workers’ cognitive abilities) to assess 

correlations between these factors and other variables that are more commonly available to 

researchers (such as students’ pre-intervention test scores, workers’ pre-intervention earnings, or 

basic demographic information). Conducting this correlational analysis would help researchers 

understand how well common baseline variables are accounting for the harder to measure factors 

that are theorized to underlie the selection process for social programs and, consequently, may 

bias nonexperimental treatment effect estimates. 
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Table 1. Sample Sizes After Data Restrictions 

 
Students with Sufficient 
Baseline Data in Feeder 

Schools at Baseline 

Students with Sufficient 
Baseline and Follow-Up 

Data 

Percentage of Students 
with Sufficient Baseline 

Data Who also Have Follow-
Up Data 

Treatmenta 678 635 94 
Control 341 304 89 
Comparison b  21,133  20,407 97 

a Treatment and control students in a traditional public school at baseline, as described in the text. 
b Comparison students in feeder schools, as described in the text. 

 
 
Table 2. Covariate Availability by State 

 

Number 
of 

Charter 
School 

Lotteries 
Baseline 

Tests 
Prebaseline 

Tests 

Race 
and 

Ethnicity Gender 

English- 
Language 
Learner 

Disability 
Status 

Free or 
Reduced-

Price Lunch 
Eligibility 

State 1 1 X  X X X X X 
State 2 2 X  X X X X X 
State 3 5 X X X  X X X 
State 4 5 X X X X X X X 
State 5 1 X X X X X X X 
State 6 1 X X  X X X X 

Note: In some instances, data come directly from the district rather than the state. 



 

 

 

 

Table 3. Baseline Covariates for the Full Experimental Sample 

 

Math Reading 

Treatment Group 
(N = 629) 

Control Group 
(N = 295) 

p-Value of 
Difference a 

Treatment Group 
(N = 630) 

Control Group 
(N = 296) 

p-Value of 
Difference 

Prior Test Scores Mean SD Mean SD  Mean SD Mean SD  
Baseline math 0.52 0.96 0.55 1.01 0.71 0.52 0.96 0.55 1.01 0.71 
Prebaseline math 0.50 0.98 0.51 0.95 0.99 0.49 0.99 0.51 0.95 0.93 
Baseline reading 0.43 0.94 0.45 0.90 0.82 0.43 0.94 0.45 0.90 0.82 
Prebaseline reading 0.47 0.98 0.46 0.76 0.95 0.46 0.99 0.46 0.76 1.00 
Other Baseline Covariates Percentage Percentage  Percentage Percentage  
Grade   0.88   0.92 

4th 37 35  37 36  
5th 55 56  55 56  
6th 9 8  9 8  

Sex   0.44   0.45 
Female 47 40  47 40  
Male 53 60  53 60  

Race/Ethnicity   0.04*   0.05 
Black, non-Hispanic 12 15  12 15  
Hispanic 19 12  19 12  
White/other 69 73  69 73  

FRPL-Eligibleb   0.74   0.74 
Yes 33 32  33 32  
No 67 69  67 68  

IEP   0.93   0.97 
Yes 26 26  26 26  
No 74 74  74 74  

English-Language Learner   0.22   0.30 
Yes 3 2  3 2  
No 97 98  97 98  

Missing Value Indicatorsc Percentage Percentage  Percentage Percentage  
Baseline math 4 5 0.46 4 5 0.45 
Prebaseline math 53 51 0.71 53 51 0.77 
Baseline reading 4 6 0.51 4 6 0.52 
Prebaseline reading 53 51 0.69 53 51 0.75 
Sex 36 37 0.72 36 37 0.74 
Race/ethnicity 8 5 0.07 8 5 0.07 

 
Sources: Charter School Study (Gleason et al. 2010) and state or district achievement and demographic data. 

Note: This table presents descriptive statistics based on weighted estimates of means, standard deviations, and percentages. To be included in the analysis, a 
treatment or control student must have a score for the outcome and at least one (of the two) baseline test scores. Percentages in this table might not sum 
to 100 because of rounding. All means are based on nonmissing values of the covariate. 

a Reported p-values for test scores and missing data indicators are from two-tailed t-tests. Reported p-values for categorical variables are from chi-square tests. 

b FRPL indicates free or reduced-priced lunch status; IEP is individualized education plan, an indicator of a student with mental or physical disabilities. 

c High percentages of missing values for some of the covariates are due to the lack of these data across one or more of the sites. 

*/** Significantly different from zero at the .05/.01 level, respectively. 

SD = standard deviation. N = sample size. 



 

 

 

 

Table 4. Estimates for Experimental Benchmarks, Full Sample 

 
Regression-Adjusted Meansa Treatment Effect 

Treatment Control Estimateb SE p-Valuec 

Math test score 0.58 0.58 -0.01 0.04 0.86 
Reading test score 0.51 0.51 0.00 0.04 0.96 
 
Note: The treatment and control group samples included 629 and 295 students, respectively, for 

math and 630 and 296 students, respectively, for reading. 
a Treatment and control means are regression adjusted using the average characteristics of the combined 
treatment and control group samples. 
b The difference between treatment and control group mean outcomes might not equal the treatment 
effect estimate because of rounding. 
c */** indicates that a treatment effect estimate is statistically significantly different from zero at the 
.05/.01 level, respectively, using a two-tailed t-test. 

SE = standard error. 

 

 

Table 5. Estimated Treatment Effects Using Regression-Based Comparison Group Approach 

 
Regression-Adjusted Meansa Treatment Effect 

Treatment Comparison Estimateb SE p-Valuec 

Math test score 0.35 0.28 0.06 0.02 0.01** 
Reading test score 0.28 0.21 0.06 0.03 0.01* 

 
Note: The treatment and comparison group samples included 629 and 20,335 students, 

respectively, for math and 630 and 20,099 students, respectively, for reading. 
a Treatment and comparison means are regression adjusted using the average characteristics of the 
combined treatment and comparison group samples. 
b The difference between treatment and comparison group mean outcomes might not equal the treatment 
effect estimate because of rounding. 
c */** indicates that a treatment effect estimate is statistically significantly different from zero at the 
.05/.01 level, respectively, using a two-tailed t-test. 

SE = standard error. 

 

 

 



 

 

 

 

Table 6. Baseline Covariates for the Full Nonexperimental Sample and the Propensity Score Matched Sample: Math 

 

Full Nonexperimental Sample Sample Used for Propensity Score Matching Analysis 

Treatment Group 
(N = 629) 

Comparison Group 
(N = 20,335) 

p-Value of 
Differencea 

Treatment Group 
(N = 551) 

Comparison Group 
(N = 1,916) 

p-Value of 
Difference 

Prior Test Scores Mean SD Mean SD  Mean SD Mean SD  
Baseline math 0.52 0.96 0.02 0.98 0.00** 0.52 0.96 0.50 0.95 0.83 
Prebaseline math 0.50 0.98 0.12 0.99 0.00** 0.46 0.98 0.36 0.98 0.17 
Baseline reading 0.43 0.94 -0.01 0.96 0.00** 0.42 0.94 0.42 0.96 0.98 
Prebaseline reading 0.47 0.98 0.03 0.97 0.00** 0.42 0.98 0.40 1.02 0.86 
Other Baseline Covariates Percentage Percentage  Percentage Percentage  
Grade   0.00**   0.98 

4th 37 31  38 38  
5th 55 54  52 52  
6th 9 15  10 10  

Sex   0.15   0.98 
Female 47 50  47 48  
Male 53 50  53 52  

Race/Ethnicity   0.00**   0.99 
Black, non-Hispanic 12 22  12 12  
Hispanic 19 26  18 18  
White/other 69 53  69 70  

FRPL-Eligibleb   0.00**   0.68 
Yes 33 47  33 34  
No 67 53  67 66  

IEP   0.00**   0.67 
Yes 26 19  25 26  
No 74 81  75 74  

English-Language Learner   0.02*   0.62 
Yes 3 5  2 3  
No 97 95  98 97  

Missing Value Indicatorsc Percentage Percentage  Percentage Percentage  
Baseline math 3 0 0.00** 1 0 0.27 
Prebaseline math 53 56 0.20 54 53 0.94 
Baseline reading 4 4 1.00 2 1 0.79 
Prebaseline reading 53 56 0.21 54 54 0.93 
Sex 36 33 0.18 33 33 0.92 
Race/ethnicity 8 5 0.00** 5 4 0.76 

 
Sources: Charter School Study (Gleason et al. 2010) and district achievement and demographic data. 

Note: This table presents descriptive statistics based on weighted estimates of means, standard deviations, and percentages. To be included in the analysis, a treatment 
or comparison student must have a score for the outcome and at least one (of the two) baseline test scores. Percentages in this table might not add to 100 
because of rounding. 

a Reported p-values for test scores and missing data indicators are from two-tailed t-tests. Reported p-values for categorical variables are from chi-square tests. 

b FRPL indicates free or reduced-priced lunch status; IEP is individualized education plan, an indicator of a student with mental or physical disabilities. 

c High percentages of missing values for some of the covariates are due to the lack of these data across one or more of the sites. 

*/** Significantly different from zero at the .05/.01 level, respectively. 

SD = standard deviation. 

N = sample size. 



 

 

 

Table 7. Estimated Treatment Effects Using Propensity Score Matching Approach 

 
Regression-Adjusted Meansa Treatment Effect 

Treatment Comparison Estimateb SEc p-Valued 

Math test score 0.54 0.49 0.05 0.03 0.08 
Reading test score 0.47 0.42 0.05 0.03 0.11 
 
Note: The treatment and comparison group samples included 551 and 1,916 students, respectively, 

for math and 552 and 1,898 students, respectively, for reading. 
a Treatment and comparison means are regression adjusted using the average characteristics of the 
combined treatment and matched comparison group samples. 
b The difference between treatment and comparison group mean outcomes might not equal the treatment 
effect estimate because of rounding. 
c Standard errors are bootstrapped using 1,000 iterations. 
d */** indicates that a treatment effect estimate is statistically significantly different from zero at the 
.05/.01 level, respectively, using a two-tailed t-test. 

SE = standard error. 

Table 8. Comparing Experimental Benchmark and Nonexperimental Estimates 

 Experimental 
Benchmark OLS Regression 

Propensity Score 
Matching 

Math Test Scores 

Estimated treatment effect 
-0.01 0.06** 0.05 
(0.04) (0.02) (0.03) 

Same policy conclusion? -- No Uncertain 

Difference from exp. benchmark 
-- 0.07* 0.06 
 (0.03) (0.04) 

p-value of difference -- 0.03 0.14 

Treatment sample 629 629 551 

Control/comparison sample 295 20,335 1,916 
Reading Test Scores 

Estimated treatment effect 0.00 0.06* 0.05 
(0.04) (0.03) (0.03) 

Same policy conclusion? -- No Yes 

Difference from exp. benchmark -- 0.06 0.04 
 (0.03) (0.04) 

p-value of difference -- 0.06 0.25 

Treatment sample 630 630 552 

Control/comparison sample 296 20,099 1,898 
 
Sources: Charter School Study (Gleason et al. 2010) and district achievement and demographic data. 

Note: Standard errors for each treatment effect estimate and difference are in parentheses. Standard 
errors for propensity score matching estimates use bootstrapping as described in Section IV. 
Standard errors for the difference between the nonexperimental and experimental estimates 
also use bootstrapping as described in this chapter. 

*/** Significantly different from zero at the .05/.01 level, respectively. 

OLS = ordinary least squares. 



 

 

 

Table 9. Estimates Using Alternative Regression Specifications 

 

Math Reading 

Experimental Nonexperimental 
Regression Experimental Nonexperimental 

Regression 

Main 
specification 

-0.01 0.06** 0.00 0.06* 
(0.04) (0.02) (0.04) (0.03) 

No 
interaction 
terms 

-0.01 0.10** -0.04 0.12** 

(0.05) (0.03) (0.04) (0.03) 

Exclude 
prebaseline 
tests 

-0.01 0.09** -0.04 0.12** 

(0.05) (0.03) (0.04) (0.03) 

Exclude 
baseline 
and 
prebaseline 
tests 

0.00 0.46** -0.02 0.43** 

(0.07) (0.04) (0.06) (0.04) 

No 
covariates 

-0.03 0.51** -0.07 0.47** 
(0.09) (0.04) (0.07) (0.04) 

 
Notes: The treatment, control, and comparison group samples included 629, 295, and 20,335 

students, respectively, for math and 630, 296, and 20,099 students, respectively, for reading. 
Standard errors for each treatment effect estimate are in parentheses. The regression model 
for our main analysis included baseline math and reading test scores, prebaseline math and 
reading test scores, sex, race/ethnicity, FRPL status, ELL status, disability status, and 
interactions between some of these variables. 

*/** Significantly different from zero at the .05/.01 level, respectively, two-tailed test. 

ELL = English-language learner; FRPL = free or reduced-price lunch. 

 

 

Table 10. Estimates With and Without Prebaseline Test Scores, Restricted to Sites With Prebaseline 
Scores 

 

Math Reading 

Experimental 
Nonexperimental 

Regression Experimental 
Nonexperimental 

Regression 

Estimated treatment effects 
when regression models 
include prebaseline tests 

-0.05 0.04 -0.09* 0.00 
(0.05) (0.03) (0.05) (0.03) 

Estimated treatment effects 
when regression models 
exclude prebaseline tests 

-0.05 0.04 -0.13** 0.02 
(0.05) (0.03) (0.05) (0.03) 

 
Note: Restricted to 12 sites for which prebaseline test scores are available. Standard errors for each 

treatment effect estimate are in parentheses. The treatment, control, and comparison group 
samples included 384, 212, and 12,347 students, respectively, for math and 385, 212, and 
12,331 students, respectively, for reading. 

*/** Significantly different from zero at the .05/.01 level, respectively, two-tailed test. 

  



 

 

 

Table 11. Nonexperimental Regression Estimates for Full District Comparison Group Versus Feeder 
Schools Only 

 Math Reading 

Experimental benchmark 
-0.01 0.00 
(0.04) (0.04) 

Nonexperimental regression 
estimate with feeder school 
comparison group 

0.06* 0.06* 
(0.02) (0.03) 

Nonexperimental regression 
estimate with full-district 
comparison group 

0.08** 0.07** 
(0.02) (0.03) 

 
Note: The treatment, control, feeder school comparison group, and full-district comparison group 

samples included 629, 295, 20,335, and 143,197 students, respectively, for math and 630, 
296, 20,099, and 142,440 students, respectively, for reading. Standard errors for each 
treatment effect estimate are in parentheses. 

*/** Significantly different from zero at the .05/.01 level, respectively, two-tailed test. 
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